4.8 Article

Optimization of configurations and cathode operating parameters on liquid-cooled proton exchange membrane fuel cell stacks by orthogonal method

期刊

APPLIED ENERGY
卷 253, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.113496

关键词

PEMFC stack; Orthogonal method; Liquid cooling; System efficiency; Stack uniformity

资金

  1. National Natural Science Foundation of China [21533005, 21706158]
  2. National Key Research and Development Program of China [2016YFB0101312]

向作者/读者索取更多资源

Water and thermal managements are critical for the performance and operation stability of proton exchange membrane fuel cell (PEMFC) stacks, which are highly associated with the stack configurations and cathode operating parameters that need to be well optimized. In this work, a numerical study is conducted with orthogonal analysis method to investigate the effect of stack configurations and cathode operating parameters on stack performance including power density, system efficiency and stack uniformity. An orthogonal array (OA) with three levels and six factors is designed to determine the interaction of each parameter as well as the optimal combination of configurations and operating parameters. The results indicate that the optimal combination with respect to power density and system efficiency is not consistent due to the associated parasitic loads. Moreover, counter-flow configuration of hydrogen channel is able to improve the water management and counter-flow configuration of coolant channel is beneficial for thermal management, both of which can further improve the stack uniformity that is desired in real application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据