4.8 Article

Interfacial-engineered cobalt@carbon hybrids for synergistically boosted evolution of sulfate radicals toward green oxidation

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 256, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2019.117795

关键词

Nanocomposites; Peroxymonosulfate; Sulfate radical; Nitrogen doping; Metal encapsulation

资金

  1. Australian Research Council [DP190103548]
  2. Open Research Projects from State Key Laboratory [SKL-ChE-16C05, QAK201808]
  3. National Science Foundation of China (NSFC) [21777033, 91645122]
  4. Science and Technology Program of Guangdong Province [2017B020216003]

向作者/读者索取更多资源

Efficient water remediation relies on robust and capable catalysts to drive the cutting-edge purification technologies. In this work, Prussian blue analogues (PBA) are engaged as the starting materials to fabricate various transition metal (TM)@carbon composites for water decontamination. The encapsulated metallic cobalt is unveiled to be more favorable to deliver electrons to the adjacent carbons than CoP and Co3O4, due to the low work function, high conductivity and formation of multiple Co-C bonds for electron tunnelling. Such a hybrid structure significantly tailors the electron density of the carbon lattice, which is the decisive factor influencing activating peroxymonosulfate (PMS) to generate highly reactive sulfate radicals for degradation of contaminants, meanwhile achieving outstanding long-term stability. Deliberate material design and theoretical computations unveil the structure-activity regimes of the composite materials in promoted carbocatalysis. This proof-of-concept study dedicates to elucidating the principles in developing fine-tuned and high-performance TM@carbon hybrids for advanced catalytic oxidation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据