4.8 Article

FeCo/FeCoNi/N-doped carbon nanotubes grafted polyhedron-derived hybrid fibers as bifunctional oxygen electrocatalysts for durable rechargeable zinc-air battery

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 254, 期 -, 页码 26-36

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2019.04.027

关键词

Hybrid porous carbon fiber; Bifunctional oxygen electrocatalysts; FeCo and FeCoNi alloys; Self-supported air cathode; Zn-air battery

资金

  1. Agency for Science, Technology and Research and Nanyang Technological University, Singapore

向作者/读者索取更多资源

The rational design and exploration of highly efficient, low-cost, and robust electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is critical for development of rechargeable metal-air batteries. Herein, we report a novel approach for the synthesis of bifunctional electrocatalysts, where Fe0.5Co0.5 and Fe0.5Co0.4Ni0.1 alloys are encapsulated in the nitrogen-doped carbon nanotubes-grafted porous polyhedron-derived hybrid fibers (FeCo/FeCoNi@NCNTs-HF). Benefiting from its hierarchically porous structure and strong synergetic coupling among FeCo, FeCoNi alloys, and N-doped carbon species. The obtained electrocatalyst exhibits a positive half-wave potential of 0.850 V for ORR and a low potential of 1.608 V to achieve a current density of 10 mA cm(-2) for OER, as well as superior stability in alkaline media. As a demonstration, FeCo/FeCoNi@NCNTs-HF is employed as the electrocatalysts in the air cathode of a Zn-air battery, which shows superior discharge and charge performance, large power density, high specific capacity, and outstanding cycling stability of 240 h (360 cycles). More impressively, excellent cyclabilitiy with a lifetime of 670 h (1005 cycles) is also achieved by the Zn-air battery with FeCo/FeCoNi@NCNTs-HF as the self-supported air electrode. This work will open a novel avenue to develop advanced bifunctional electrocatalysts for the next generation of metal-air batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据