4.6 Article

Heterologous Production and Functional Characterization of Ageritin, a Novel Type of Ribotoxin Highly Expressed during Fruiting of the Edible Mushroom Agrocybe aegerita

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.01549-19

关键词

alpha-sarcin; SRL; GAGA tetraloop; basidiomycetes; ribosome; riboendonuclease; rRNA; gene expression; entomotoxicity

资金

  1. Swiss National Science Foundation [31003A-173097]
  2. ETH Zurich
  3. Senckenberg Gesellschaft fur Naturforschung
  4. Swiss National Science Foundation (SNF) [31003A_173097] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Fungi produce various defense proteins against antagonists, including ribotoxins. These toxins cleave a single phosphodiester bond within the universally conserved sarcin-ricin loop of ribosomes and inhibit protein biosynthesis. Here, we report on the structure and function of ageritin, a previously reported ribotoxin from the edible mushroom Agrocybe aegerita. The amino acid sequence of ageritin was derived from cDNA isolated from the dikaryon A. aegerita AAE-3 and lacks, according to in silico prediction, a signal peptide for classical secretion, predicting a cytoplasmic localization of the protein. The calculated molecular weight of the protein is slightly higher than the one reported for native ageritin. The A. aegerita ageritin-encoding gene, AaeAGT1, is highly induced during fruiting, and toxicity assays with AaeAGT1 heterologously expressed in Escherichia coli showed a strong toxicity against Aedes aegypti larvae yet not against nematodes. The activity of recombinant A. aegerita ageritin toward rabbit ribosomes was confirmed in vitro. Mutagenesis studies revealed a correlation between in vivo and in vitro activities, indicating that entomotoxicity is mediated by ribonucleolytic cleavage. The strong larvicidal activity of ageritin makes this protein a promising candidate for novel biopesticide development. IMPORTANCE Our results suggest a pronounced organismal specificity of a protein toxin with a very conserved intracellular molecular target. The molecular details of the toxin-target interaction will provide important insight into the mechanism of action of protein toxins and the ribosome. This insight might be exploited to develop novel bioinsecticides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据