4.6 Article

High-Level Abundances of Methanobacteriales and Syntrophobacterales May Help To Prevent Corrosion of Metal Sheet Piles

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.01369-19

关键词

corrosion protection; iron sheet piles; methanogens; organic compound degradation

资金

  1. Nederlandse Organisatie voor Wetenschappelijk Onderzoek through the Soehngen Institute of Anaerobic Microbiology Gravitation Grant [024.002.002]
  2. Netherlands Earth System Science Center Gravitation Grant [024.002.001]
  3. European Research Council Advanced Grant Ecology of Anaerobic Methane Oxidizing Microbes [339880]
  4. NWO Domain Applied and Engineering Sciences [AES], Netherlands Organization for Scientific Research (NWO)
  5. Ministry of Economic Affairs [11333]

向作者/读者索取更多资源

Iron sheet piles are widely used in flood protection, dike construction, and river bank reinforcement. Their corrosion leads to gradual deterioration and often makes replacement necessary. Natural deposit layers on these sheet piles can prevent degradation and significantly increase their life span. However, little is known about the mechanisms of natural protective layer formation. Here, we studied the microbially diverse populations of corrosion-protective deposit layers on iron sheet piles at the Gouderak pumping station in Zuid-Holland, the Netherlands. Deposit layers, surrounding sediment and top sediment samples were analyzed for soil physicochemical parameters, microbially diverse populations, and metabolic potential. Methanogens appeared to be enriched 18-fold in the deposit layers. After sequencing, metagenome assembly and binning, we obtained four nearly complete draft genomes of microorganisms (Methanobacteriales, two Coriobacteriales, and Syntrophobacterales) that were highly enriched in the deposit layers, strongly indicating a potential role in corrosion protection. Coriobacteriales and Syntrophobacterales could be part of a microbial food web degrading organic matter to supply methanogenic substrates. Methane-producing Methanobacteriales could metabolize iron, which may initially lead to mild corrosion but potentially stimulates the formation of a carbonate-rich protective deposit layer in the long term. In addition, Methanobacteriales and Coriobacteriales have the potential to interact with metal surfaces via direct interspecies or extracellular electron transfer. In conclusion, our study provides valuable insights into microbial populations involved in iron corrosion protection and potentially enables the development of novel strategies for in situ screening of iron sheet piles in order to reduce risks and develop more sustainable replacement practices. IMPORTANCE Iron sheet piles are widely used to reinforce dikes and river banks. Damage due to iron corrosion poses a significant safety risk and has significant economic impact. Different groups of microorganisms are known to either stimulate or inhibit the corrosion process. Recently, natural corrosion-protective deposit layers were found on sheet piles. Analyses of the microbial composition indicated a potential role for methane-producing archaea. However, the full metabolic potential of the microbial communities within these protective layers has not been determined. The significance of this work lies in the reconstruction of the microbial food web of natural corrosion-protective layers isolated from noncorroding metal sheet piles. With this work, we provide insights into the microbiological mechanisms that potentially promote corrosion protection in freshwater ecosystems. Our findings could support the development of screening protocols to assess the integrity of iron sheet piles to decide whether replacement is required.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据