4.8 Article

Nonfaradaic Current Suppression in DNA-Based Electrochemical Assays with a Differential Potentiostat

期刊

ANALYTICAL CHEMISTRY
卷 91, 期 24, 页码 15833-15839

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.9b04149

关键词

-

资金

  1. National Institutes of Health [R01 DK093810]
  2. National Science Foundation [CBET-1403495]
  3. Department of Chemistry and Biochemistry at Auburn University

向作者/读者索取更多资源

One of the key factors limiting sensitivity in many electrochemical assays is the nonfaradaic or capacitive current. This is particularly true in modern assay systems based on DNA monolayers at gold electrode surfaces, which have shown great promise for bioanalysis in complex milieu such as whole blood or serum. While various changes in analytical parameters, redox reporter molecules, DNA structures, probe coverage, and electrode surface area have been shown useful, background reduction by hardware subtraction has not yet been explored for these assays. Here, we introduce new electrochemistry hardware that considerably suppresses nonfaradaic currents through real-time analog subtraction during current-to-voltage conversion in the potentiostat. This differential potentiostat (DiffStat) configuration is shown to suppress or remove capacitance currents in chronoamperometry, cyclic voltammetry, and square-wave voltammetry measurements applied to nucleic acid hybridization assays at the electrode surface. The DiffStat makes larger electrodes and higher sensitivity settings accessible to the user, providing order-of-magnitude improvements in sensitivity, and it also significantly simplifies data processing to extract faradaic currents in square-wave voltammetry (SWV). Because two working electrodes are used for differential measurements, unique arrangements are introduced such as converting signal-OFF assays to signal-ON assays or background drift correction in 50% human serum. Overall, this new potentiostat design should be helpful not only in improving the sensitivity of most electrochemical assays, but it should also better support adaptation of assays to the point-of-care by circumventing complex data processing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据