4.8 Article

Lenz's Law-Based Virtual Net for Detection of Pathogenic Bacteria from Water

期刊

ANALYTICAL CHEMISTRY
卷 91, 期 24, 页码 15585-15590

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.9b03636

关键词

-

资金

  1. National Research Foundation of Korea (NRF) - Ministry of Science and ICT [NRF-2019R1A2C1084182]

向作者/读者索取更多资源

We have developed a method for rapid detection of pathogenic bacteria from water using a virtual net comprising magnetic nanoparticle clusters (MNC). When an external magnetic field was applied to the antibody-functionalized MNC (Ab-MNC) solution in a glass tube (GT), the Ab-MNCs were aligned along the direction of the applied magnetic field to form a wall of MNCs. The injection of a liquid into the GT pushed the MNCs to flow when the drag force exceeded the magnetic force that held the MNCs. In contrast, injection of a liquid into the GT wrapped with a copper tape (Cu-GT) created a magnetic field in the opposite direction of the liquid flow according to Lenz's law, which retained the MNCs inside Cu-GT even at a flow rate 2.5 times higher than the maximum flow rate at which the MNCs were retained inside the GT. As proof of concept, E. coli O157:H7-spiked aqueous solutions were injected into Cu-GT containing Ab-MNCs. The structural flexibility of the Ab-MNC wall allowed the liquid to pass through but induced binding of the bacteria to the Ab-MNC wall, just as the wall acted like a virtual net. The detection limit was 10(2) CFU/mL of E. coli as measured by an ATP luminometer, and the total assay time was 15 min including 10 min for the isolation and separation steps.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据