4.7 Article

Energy conservation of V-shaped swarming fixed-wing drones through position reconfiguration

期刊

AEROSPACE SCIENCE AND TECHNOLOGY
卷 94, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ast.2019.105398

关键词

Drag; Swarm; Drones; Leader; Energy; Reconfiguration

向作者/读者索取更多资源

There is currently a growing interest in the area of drag reduction of unmanned aerial vehicles. In this paper, the swarming flight of the fixed-wing drones and a load balancing mechanism during the swarm is investigated. As an example, the swarm flight of EBee Sensfly flying wings is analyzed through the proposed methodology. The aerodynamic drag forces of each individual drone and the swarm are modeled theoretically. It is shown that drones through the swarming flight can save up to 70% of their energy and consequently improve their performance. As swarming drones have different loads and consume a different level of energy depending on their positions, there is a need to replace them during the flight in order to enhance their efficiency. To this end, regarding the number of drones, a replacement algorithm is defined for them so that they will be able to save more energy during their mission. It is shown that there is more than 21 percent improvement in flight time and distance of swarming drones after replacement. This method of replacement and formation can be considered as one of the effective factors in a drag reduction of swarming aerial vehicles. Published by Elsevier Masson SAS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据