4.7 Article

Autonomous onboard estimation of mean orbital elements for geostationary electric-propulsion satellites

期刊

AEROSPACE SCIENCE AND TECHNOLOGY
卷 94, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ast.2019.105369

关键词

Geostationary orbit; Mean orbital elements; Filtering algorithm; Autonomous onboard estimation

资金

  1. National Natural Science Foundation of China [11772051]
  2. Excellent Young Scholars Research Fund of Beijing Institute of Technology [2015YG0101]
  3. 111 Project [B16003]

向作者/读者索取更多资源

Mean orbital elements estimation for geostationary (GEO) satellites is important for related studies, including station-keeping, rendezvous and end-of-life disposal. With increasingly limited operational slots in GEO region and the advance of all-electric-propulsion satellites, a fast and accurate mean orbital element estimation tool is necessary. In order to balance estimation precision and mission cost as well as to be independent of the ground station, this paper develops an autonomous onboard estimation method of the mean orbital elements for geostationary electric-propulsion satellites. Natural perturbations in GEO, including Earth's triaxiality, luni-solar attractions, and solar radiation pressure, are considered. Terms of appropriate orders due to these effects are chosen to model the semi-analytical dynamics, where modified short-period variations and differential mean orbital elements are derived. Regarding mean orbital elements as state variables and osculating orbital elements as measurements, a filter as well as analytical Jacobians is formulated to make the accurate estimation. Five scenarios are simulated to validate the accuracy and efficiency of the proposed method in the GEO region. (C) 2019 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据