4.8 Article

Instant Thermal Switching from Soft Hydrogel to Rigid Plastics Inspired by Thermophile Proteins

期刊

ADVANCED MATERIALS
卷 32, 期 4, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201905878

关键词

friction-heat protection; gel-plastic switching; super modulus jumping; thermal stiffening; thermoinduced rubbery-to-glassy transition

资金

  1. JSPS KAKENHI [JP17H06144, 17K19146, 17H06376]
  2. Grants-in-Aid for Scientific Research [17K19146, 17H06376] Funding Source: KAKEN

向作者/读者索取更多资源

Proteins of thermophiles are thermally stable in a high-temperature environment, adopting a strategy of enhancing the electrostatic interaction in hydrophobic media at high temperature. Herein, inspired by the molecular mechanism of thermally stable proteins, the synthesis of novel polymer materials that undergo ultrarapid, isochoric, and reversible switching from soft hydrogels to rigid plastics at elevated temperature is reported. The materials are developed from versatile, inexpensive, and nontoxic poly(acrylic acid) hydrogels containing calcium acetate. By the cooperative effects of hydrophobic interaction and ionic interaction, the hydrogels undergo significant spinodal decomposition and subsequent rubbery-to-glassy transition when heated to an elevated temperature. As a result, the gels exhibit super-rapid and significant hikes in stiffness, strength, and toughness by up to 1800-, 80-, and 20-folds, respectively, when the temperature is raised from 25 to 70 degrees C, while the volumes of the gels are almost unchanged. As a potential application, the performance of the materials as athletic protective gear is demonstrated. This work provides a pathway for developing thermally stiffened materials and may significantly broaden the scope of polymer applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据