4.8 Article

MXene-Based Dendrite-Free Potassium Metal Batteries

期刊

ADVANCED MATERIALS
卷 32, 期 4, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201906739

关键词

dendrite growth; MXenes; potassium metal anodes; potassium-sulfur batteries; 3D scaffolds

资金

  1. Australian Renewable Energy Agency project [ARENA 2014/RND106]
  2. Rail Manufacturing CRC projects [RMCRC: R1.1.1, RMCRC: R1.1.2]
  3. Australian Research Council (ARC) [DP170100436]
  4. China Scholarship Council [201606840117]

向作者/读者索取更多资源

Potassium metal batteries are considered as attractive alternatives beyond lithium-ion batteries. However, uncontrollable dendrite growth on the potassium metal anode has restrained their practical applications. A high-performance potassium anode achieved by confining potassium metal into a titanium-deficient nitrogen-containing MXene/carbon nanotube freestanding scaffold is reported. The high electronic transport and fast potassium diffusion in this scaffold enable reduced local current density and homogeneous ionic flux during plating/stripping processes. Furthermore, as verified by theoretical calculations and experimental investigations, such potassium-philic MXene sheets can induce the nucleation of potassium, and guide potassium to uniformly distribute in the scaffold upon cycling. Consequently, the as-developed potassium metal anodes exhibit a dendrite-free morphology with high Coulombic efficiency and long cycle life during plating/stripping processes. Such anodes also deliver significantly improved electrochemical performances in potassium-sulfur batteries compared with bare potassium metal anodes. This work can provide a new avenue for developing potassium metal-based batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据