4.8 Article

4D-Printed Biodegradable and Remotely Controllable Shape Memory Occlusion Devices

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 29, 期 51, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201906569

关键词

4D printing; atrial septal defects; biodegradable occluder; remotely controllable; shape memory polymers

资金

  1. National Natural Science Foundation of China [11632005, 11672086]

向作者/读者索取更多资源

Implantation of occlusion devices is an effective approach for the treatment of congenital heart diseases in the clinic. However, most commercial clinical occlusion devices are currently made of nondegradable metals, which may lead to complications such as perforation, allergies, and erosion. In this work, 4D-printed novel, biodegradable, remotely controllable, and personalized shape memory occlusion devices are demonstrated and atrial septal defect occluders are exemplified. By incorporating Fe3O4 magnetic particles into the shape memory poly(lactic acid) matrix, the deployment of the occluders can be controlled remotely after implantation. The excellent cytocompatibility and histocompatibility are conducive to cell adhesion and ingrowth of granulation tissues into the occluders, thus facilitating rapid endothelialization. In addition, personalized shape memory occluders ensure an ideal fit and provide sufficient support for defects. Therefore, 4D-printed shape memory occluders can be used as a potential substitute for metal occlusion devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据