4.8 Article

Trimetallic Mn-Fe-Ni Oxide Nanoparticles Supported on Multi-Walled Carbon Nanotubes as High-Performance Bifunctional ORR/OER Electrocatalyst in Alkaline Media

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 30, 期 6, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201905992

关键词

bifunctional electrocatalysts; oxidized multi-walled carbon nanotubes; oxygen evolution reaction; oxygen reduction reaction; synergistic effects

资金

  1. Bundesministerium fur Bildung und Forschung (BMBF) [FKZ 03EK3548]
  2. Deutscher Akademischer Austauschdienst (DAAD)
  3. Consejo Nacional de Ciencia y Tecnologia (CONACyT)
  4. Russian Foundation for Basic Research [16-32-60046 mol_a_dk]
  5. Ministry of Science and Higher Education of the Russian Federation [AAAA-A17-117041710085-9]
  6. International Max-Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS-RECHARGE)

向作者/读者索取更多资源

Discovering precious metal-free electrocatalysts exhibiting high activity and stability toward both the oxygen reduction (ORR) and the oxygen evolution (OER) reactions remains one of the main challenges for the development of reversible oxygen electrodes in rechargeable metal-air batteries and reversible electrolyzer/fuel cell systems. Herein, a highly active OER catalyst, Fe0.3Ni0.7OX supported on oxygen-functionalized multi-walled carbon nanotubes, is substantially activated into a bifunctional ORR/OER catalyst by means of additional incorporation of MnOX. The carbon nanotube-supported trimetallic (Mn-Ni-Fe) oxide catalyst achieves remarkably low ORR and OER overpotentials with a low reversible ORR/OER overvoltage of only 0.73 V, as well as selective reduction of O-2 predominantly to OH-. It is shown by means of rotating disk electrode and rotating ring disk electrode voltammetry that the combination of earth-abundant transition metal oxides leads to strong synergistic interactions modulating catalytic activity. The applicability of the prepared catalyst for reversible ORR/OER electrocatalysis is evaluated by means of a four-electrode configuration cell assembly comprising an integrated two-layer bifunctional ORR/OER electrode system with the individual layers dedicated for the ORR and the OER to prevent deactivation of the ORR activity as commonly observed in single-layer bifunctional ORR/OER electrodes after OER polarization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据