4.8 Article

27%-Efficiency Four-Terminal Perovskite/Silicon Tandem Solar Cells by Sandwiched Gold Nanomesh

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 30, 期 4, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201908298

关键词

conductivity; multijunction; tandem; nanomesh electrodes; perovskite solar cells; transparency

资金

  1. National Natural Science Foundation of China [61975106, 61604090]
  2. Shaanxi Technical Innovation Guidance Project [2018HJCG-17]
  3. National Key Research and Development Program of China [2016YFA0202403]
  4. National University [GK261001009]
  5. 111 Project [B14041]
  6. Chinese National 1000-Talents-Plan Program
  7. [IRT_14R33]

向作者/读者索取更多资源

Multijunction/tandem solar cells have naturally attracted great attention because they are not subject to the Shockley-Queisser limit. Perovskite solar cells are ideal candidates for the top cell in multijunction/tandem devices due to the high power conversion efficiency (PCE) and relatively low voltage loss. Herein, sandwiched gold nanomesh between MoO3 layers is designed as a transparent electrode. The large surface tension of MoO3 effectively improves wettability for gold, resulting in Frank-van der Merwe growth to produce an ultrathin gold nanomesh layer, which guarantees not only excellent conductivity but also great optical transparency, which is particularly important for a multijunction/tandem solar cell. The top MoO3 layer reduces the reflection at the gold layer to further increase light transmission. As a result, the semitransparent perovskite cell shows an 18.3% efficiency, the highest reported for this type of device. When the semitransparent perovskite device is mechanically stacked with a heterojunction silicon solar cell of 23.3% PCE, it yields a combined efficiency of 27.0%, higher than those of both the sub-cells. This breakthrough in elevating the efficiency of semitransparent and multijunction/tandem devices can help to break the Shockley-Queisser limit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据