4.8 Review

Thermal Conductivity Reduction in a Nanophononic Metamaterial versus a Nanophononic Crystal: A Review and Comparative Analysis

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 30, 期 8, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201906718

关键词

nanophononics; nanophononic crystals; nanophononic metamaterials; thermal transport; thermoelectric materials

资金

  1. Advanced Research Projects Agency-Energy (ARPA-E) [DE-AR0001056]
  2. National Science Foundation [ACI-1532235, ACI-1532236, ACI-1548562]

向作者/读者索取更多资源

The notion of a locally resonant metamaterial-widely applied to light and sound-has recently been introduced to heat, whereby the thermal conductivity is reduced primarily by intrinsic localized atomic vibrations rather than scattering mechanisms. This article reviews and analyzes this new emerging concept, termed nanophononic metamaterial (NPM), and contrasts it with the competing concept of a nanophononic crystal (NPC) in which thermal conductivity reduction is realized primarily via nanoscale Bragg scattering. Both the NPM and NPC core mechanisms require the presence of a sufficient level of wave behavior, which is possible when there is a relatively wide distribution of the phonon mean free path (MFP). Silicon serves as a perfect material to form NPMs and NPCs given its relatively large average phonon MFP. This offers a unique opportunity considering silicon's abundance and mature fabrication technology. It is shown in this comparative study that while both the NPM and NPC nanosystems may be rendered to serve as extreme insulators of heat, an NPM may do so without excessive reduction in the minimum feature size-which is key to keeping the electrical properties intact. This trait makes a silicon-based NPM poised to serve as a low-cost thermoelectric material with exceptional performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据