4.8 Article

Precisely Encoded Barcodes Using Tetrapod CdSe/CdS Quantum Dots with a Large Stokes Shift for Multiplexed Detection

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 30, 期 3, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201906707

关键词

Forster resonance energy transfer (FRET); large Stokes shift; multiplexed detection; photon re-absorption; quantum dots-encoded microbeads

资金

  1. National Natural Science Foundation of China [81671782, 81971704]
  2. National Key Research and Development Program of China [2017YFA0205304]
  3. Clinical Research Plan of SHDC [16CR3057A]
  4. Medicine and Engineering Cross Research Foundation of Shanghai Jiao Tong University [YG2017ZD02]

向作者/读者索取更多资源

A serious obstacle to the construction of high-capacity optical barcodes in suspension array technology is energy transfer, which can prompt unpredictable barcode signals, limited barcode numbers, and the need for an unfeasible number of experimental iterations. This work reports an effective and simple way to eliminate energy transfer in multicolor quantum dots (QDs)-encoded microbeads by incorporating tetrapod CdSe/CdS QDs with a large Stokes shift (about 180 nm). Exploiting this unique feature enables the facile realization of a theoretical 7 x 7-1 barcoding matrix combining two colors and seven intensity levels. As such, microbeads containing tetrapod CdSe/CdS QDs are demonstrated to possess a powerful encoding capacity which allows for precise barcode design. The ability of the Shirasu porous glass membrane emulsification method to easily control microbead size facilitates the establishment of a 3D barcode library of 144 distinguishable barcodes, indicating the enormous potential to enable large-scale multiplexed detection. Moreover, when applied for the multiplexed detection of five common allergens, these barcodes exhibit superior detection performance (limit of detection: 0.01-0.02 IU mL(-1)) for both spiked and patient serum samples. Therefore, this new coding strategy helps to expand barcoding capacity while simultaneously reducing the technical and economic barriers to the optical encoding of microbeads for high-throughput multiplexed detection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据