4.8 Article

Hybrid 3D Printing of Synthetic and Cell-Laden Bioinks for Shape Retaining Soft Tissue Grafts

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 30, 期 3, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201907145

关键词

3D printing; composite scaffolds; double network hydrogels; poly(ethylene) glycol; shape retention

资金

  1. National Institute of Biomedical Imaging and Bioengineering/National Institutes of Health (NIBIB/NIH) Center for Engineering Complex Tissues [P41 EB023833]

向作者/读者索取更多资源

Despite recent advances in clinical procedures, the repair of soft tissue remains a reconstructive challenge. Current technologies such as synthetic implants and dermal flap autografting result in inefficient shape retention and unpredictable aesthetic outcomes. 3D printing, however, can be leveraged to produce superior soft tissue grafts that allow enhanced host integration and volume retention. Here, a novel dual bioink 3D printing strategy is presented that utilizes synthetic and natural materials to create stable, biomimetic soft tissue constructs. A double network ink composed of covalently cross-linked poly(ethylene) glycol and ionically cross-linked alginate acts as a physical support network that promotes cell growth and enables long-term graft shape retention. This is coupled with a cell-laden, biodegradable gelatin methacrylate bioink in a hybrid printing technique, and the composite scaffolds are evaluated in their mechanical properties, shape retention, and cytotoxicity. Additionally, a new shape analysis technique utilizing CloudCompare software is developed that expands the available toolbox for assessing scaffold aesthetic properties. With this dynamic 3D bioprinting strategy, complex geometries with robust internal structures can be easily modulated by varying the print ratio of nondegradable to sacrificial strands. The versatility of this hybrid printing fabrication platform can inspire the design of future multimaterial regenerative implants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据