4.7 Article

A cardiac myocyte-restricted Lin28/let-7 regulatory axis promotes hypoxia-mediated apoptosis by inducing the AKT signaling suppressor PIK3IP1

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbadis.2015.12.004

关键词

Ischemia-reperfusion; Apoptosis; let-7; Lin28; AKT; PIK3IP1

资金

  1. National Institutes of Health [NHLBI R-01-HL71094]
  2. Florida Heart Research Institute
  3. American Heart Association Greater Southeastern Affiliate Predoctoral fellowship [12PRE12080052]

向作者/读者索取更多资源

Rationale: The let-7 family of microRNAs (miRs) regulates critical cell functions, including survival signaling, differentiation, metabolic control and glucose; utilization. These functions may be important during myocardial ischemia. MiR-let-7 expression is under tight temporal and spatial control through multiple redundant mechanisms that may be stage-, isoform- and tissue-specific. Objective: To determine the mechanisms and functional consequences of miR-let-7 regulation by hypoxia in the heart. Methods and results: MiR-let-7a, -7c and -7g were downregulated in the adult mouse heart early after coronary occlusion, and in neonatal rat ventricular myocytes subjected to hypoxia. Let-7 repression did not require glucose depletion, and occurred at a post-transcriptional level. Hypoxia also induced the RNA binding protein Lin28, a negative regulator of let-7. Hypoxia ineither induced Lin28 nor repressed miR-let-7 in cardiac fibroblasts. Both changes were abrogated by treatment with the histone deacetylase inhibitor trichostatin A. Restoration of let-7g to hypoxic myocytes and to ischemia-reperfused mouse hearts in vivo via lentiviral transduction potentiated the hypoxia-induced phosphorylation and activation of Akt, and prevented hypoxia-dependent caspase activation and death. Mechanistically, phosphatidyl inositol 3-kinase interacting protein 1 (Pik3ip1), a negative regulator of PI3K, was identified as a novel target of miR-let-7 by a crosslinking technique showing that miR-let-7g specifically targets Pik3ip1 to the cardiac myocyte Argonaute complex RISC. Finally, in non-failing and failing human myocardium, we found specific inverse relationships between Lin28 and miR-let-7g, and between miR-let-7g and PIK3IP1. Conclusion: A conserved hypoxia-responsive Lin28-miR-let-7-Pik3ip1 regulatory axis is specific to cardiac myocytes and promotes apoptosis during myocardial ischemic injury. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据