4.8 Article

Oligonucleotide-functionalized hydrogels for sustained release of small molecule (aptamer) therapeutics

期刊

ACTA BIOMATERIALIA
卷 102, 期 -, 页码 315-325

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2019.11.037

关键词

Drug delivery; Controlled release; Biomaterials; Hydrogel; Aptamer; Oligonucleotides

资金

  1. National Science Foundation [CBET 1355713]

向作者/读者索取更多资源

Natural and synthetic hydrogels have been widely investigated as biomaterial scaffolds to promote tissue repair and regeneration. Nevertheless, the scaffold alone is often insufficient to drive new tissue growth, instead requiring continuous delivery of therapeutics, such as proteins or other biomolecules that work in concert with structural support provided by the scaffold. However, because of the high-water content. hydrogels tend to be permeable and cause rapid release of the encapsulated drug, which could lead to serious complications from local overdose and may result in the significant waste of encapsulated therapeutic(s). To this end, we designed an oligonucleotide-functionalized hydrogel that can provide sustained and controlled delivery of therapeutics for up to 4 weeks. To prove this concept, we successfully achieved sustained release (for over 28 days) of model anti-Nogo receptor (anti-NgR) RNA aptamer from oligonucleotide-functionalized hyaluronic acid-based hydrogel by changing the complementarity between the short antisense sequences and the aptamer. Furthermore, the released aptamer successfully blocked neuro-inhibitory effects of myelin-derived inhibitors and promoted neurite outgrowth from rat dorsal root ganglia in vitro. Because antisense sequences can be designed to bind to proteins, peptides, and aptamer, our oligonucleotide-functionalized hydrogel offers a promising therapeutic delivery system to obtain controlled release (both bolus and sustained) of various therapeutics for the treatment of complex diseases and injury models, such as spinal cord injury. Statement of significance Producing a therapeutic effect often requires the administration of multiple injections with high dosages. This regimen causes discomfort to the patient and raises cost of treatment. Additionally, systemic delivery of therapeutics often results in adverse effects; therefore, local delivery at the site of injury is desirable. Therefore, in this study, we designed an oligonucleotide-functionalized biomaterial platform using ssDNA oligonucleotides (immobile species) as antisense sequences to increase residence time and fine-tune the release of anti-nogo receptor aptamer (mobile species) for spinal cord injury application. Because antisense sequences can be designed to bind proteins, peptides, and aptamer, our hydroget offers a promising delivery system to obtain controlled release of various therapeutics for the treatment of complex diseases and injury models. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据