4.8 Article

Synergistic Solvent Extraction Is Driven by Entropy

期刊

ACS NANO
卷 13, 期 12, 页码 13745-13758

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.9b07605

关键词

self-assembly; nanoscale; mesoscopic modeling; extraction; complexation; extraction landscape

资金

  1. European Research Council under the European Union [320915]
  2. Slovenian Research Agency [P3-0388]
  3. [BIFR/CEA/16-18-002]

向作者/读者索取更多资源

In solvent extraction, the self-assembly of amphiphilic molecules into an organized structure is the phenomenon responsible for the transfer of the metal ion from the aqueous phase to the organic solvent. Despite their significance for chemical engineering and separation science, the forces driving the solute transfer are not fully understood. Instead of assuming the simple complexation reaction with predefined stoichiometry, we model synergistic extraction systems by a colloidal approach that explicitly takes into account the self-assembly resulting from the amphiphilic nature of the extractants. Contrary to the current paradigm of simple stoichiometry behind liquid liquid extraction, there is a severe polydispersity of aggregates completely different in compositions, but similar in the free energy. This variety of structures on the nanoscale is responsible for the synergistic transfer of ions to the organic phase. Synergy can be understood as a reciprocal effect of chelation: it enhances extraction because it increases the configurational entropy of an extracted ion. The global overview of the complex nature of a synergistic mixture shows different regimes in self-assembly, and thus in the extraction efficiency, which can be tuned with respect to the green chemistry aspect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据