4.8 Article

Rational Construction of Fe2N@C Yolk-Shell Nanoboxes as Multifunctional Hosts for Ultralong Lithium-Sulfur Batteries

期刊

ACS NANO
卷 13, 期 10, 页码 12137-12147

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.9b06629

关键词

Fe2N@C; multifunctional hosts; chemical bonding; long-term cycling; lithium-sulfur batteries

资金

  1. National Postdoctoral Program for Innovative Talents [BX201700103]
  2. China Postdoctoral Science Foundation [2018M633664]
  3. National Science Foundation of China [51702362]
  4. National Natural Science Foundation of China [21875273]
  5. Youth Innovation Promotion Association of the Chinese Academy of Sciences [2019298]

向作者/读者索取更多资源

Rationally constructing inexpensive sulfur hosts that have high electronic conductivity, large void space for sulfur, strong chemisorption, and rapid redox kinetics to polysulfides is critically important for their practical use in lithium-sulfur (Li-S) batteries. Herein, we have designed a multifunctional sulfur host based on yolk-shelled Fe2N@C nanoboxes (Fe2N@C NBs) through a strategy of etching combined with nitridation for high-rate and ultralong Li-S batteries. The highly conductive carbon shell physically confines the active material and provides efficient pathways for fast electron/ion transport. Meanwhile, the polar Fe2N core provides strong chemical bonding and effective catalytic activity for polysulfides, which is proved by density functional theory calculations and electrochemical analysis techniques. Benefiting from these merits, the S/Fe2N@C NBs electrode with a high sulfur content manifests a high specific capacity, superior rate capability, and long-term cycling stability. Specifically, even after 600 cycles at 1 C, a capacity of 881 mAh g(-1) with an average fading rate of only 0.036% can be retained, which is among the best cycling performances reported. The strategy in this study provides an approach to the design and construction of yolk-shelled iron-based compounds@carbon nanoarchitectures as inexpensive and efficient sulfur hosts for realizing practically usable Li-S batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据