4.8 Article

Atomically Thin Boron Nitride as an Ideal Spacer for Metal-Enhanced Fluorescence

期刊

ACS NANO
卷 13, 期 10, 页码 12184-12191

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.9b06858

关键词

boron nitride; metal-enhanced fluorescence; dielectric spacer; plasmonic nanoparticle; fluorescence quenching; two-dimensional materials

资金

  1. Australian Research Council (ARC) [DE160100796]
  2. VILLUM FONDEN [16498]
  3. ARC [DP180100077, DP190101058]
  4. Elemental Strategy Initiative
  5. CREST, JST [JPMJCR15F3]
  6. EPSRC [EP/N025938/1] Funding Source: UKRI
  7. Australian Research Council [DE160100796] Funding Source: Australian Research Council

向作者/读者索取更多资源

Metal-enhanced fluorescence (MEF) considerably enhances the luminescence for various applications, but its performance largely depends on the dielectric spacer between the fluorophore and plasmonic system. It is still challenging to produce a defect-free spacer having an optimized thickness with a sub-nanometer accuracy that enables reusability without affecting the enhancement. In this study, we demonstrate the use of atomically thin hexagonal boron nitride (BN) as an ideal MEF spacer owing to its multifold advantages over the traditional dielectric thin films. With rhodamine 6G as a representative fluorophore, it largely improves the enhancement factor (up to similar to 95 +/- 5), sensitivity (10(-8) M), reproducibility, and reusability (similar to 90% of the plasmonic activity is retained after 30 cycles of heating at 350 degrees C in air) of MEF. This can be attributed to its two-dimensional structure, thickness control at the atomic level, defect-free quality, high affinities to aromatic fluorophores, good thermal stability, and excellent impermeability. The atomically thin BN spacers could increase the use of MEF in different fields and industries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据