4.8 Article

High-Performance Phosphorus-Graphite Dual-Ion Battery

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 49, 页码 45755-45762

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b16819

关键词

dual-ion batteries; alloying anodes; phosphorus; sodium ions; presodiation

资金

  1. National Natural Science Foundation of China [51822201, 51622204, U1804138]

向作者/读者索取更多资源

Recently, dual-ion batteries (DIBs) are regarded as a promising alternative to well-developed lithium-ion batteries, and the development of high-performance and abundant-sodium-based DIBs (SDIBs) is being intensively pursued. In this work, a novel SDIB composed of a phosphorus (P)-based anode and graphite (G) cathode is successfully constructed for the first time. This P-G SDIB shows a high working voltage of around 3.9 V, a high reversible capacity of 373 mA h/g, good rate capability, and long cyclability, which are superior to those of the most reported DIBs. The ex situ X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy tests reveal the insertion/extraction mechanism of Na+ ions into/from P-based anodes via reversible Na-P alloying reactions accompanied with high charge-storage capability. Moreover, the presodiation of P-based composites is found to be an efficient approach to boost the cycling performance of the P-G SDIB by forming a stable NaF-rich solid electrolyte interphase layer to alleviate electrolyte decomposition. Our results demonstrate that P-based SDIBs possess tremendous potential for practical electrochemical energy-storage applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据