4.8 Article

Highly Efficient Purification of Multicomponent Wastewater by Electrospinning Kidney-Bean-Skin-like Porous H-PPAN/rGO-g-PAO@Ag+/Ag Composite Nanofibrous Membranes

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 50, 页码 46920-46929

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b16889

关键词

Schottky junction; photocatalysis; filtration; antibacterial activity; nanofibrous membrane

资金

  1. National Natural Science Foundation of China [51573135]
  2. Tianjin Science and Technology Military and Civilian Integration key special project [18ZXJMTG00110]

向作者/读者索取更多资源

Due to the complexity of harmful wastewater components, environmental and multifunctional materials are required for sewage purification. In this paper, a novel kidney-bean-skin-like hydrophilic porous polyacrylonitrile/reduced graphene oxide-g-poly(amidoxime)-loaded Ag+ (H-PPAN/rGO-g-PAO@Ag+/Ag) composite nanofiber membrane was fabricated by combining electrospinning and hydrolysis methods. The spinning solution was pumped at a rate of 0.4 mL/h with the voltage set at a constant value of 23 kV. Then, some of the -CN groups switched to hydrophilic -COOH groups via a hydrolysis method, which acts as a linker of GO-g-PAN, Ag+, and the polyacrylonitrile (PAN) matrix. A further step of chelation and thermal treatment were used for generating Schottky junctions between rGO-g-PAO@Ag+ and Ag. After five-cycle tests, it exhibited outstanding mechanical properties ensuring the filtration and purification performance of the H-PPAN/rGO-g-PAO@Ag+/Ag composite nanofiber membrane (i.e., the tensile strength was still 7.21 MPa, and the elongation was 61.53%) for simulated wastewater. The methods of thermal treatment and high-pressure Hg lamp irradiation promoted the reduction of GO to rGO and Ag+ to Ag particles, which endows the final product H-PPAN/rGO-g-PAO@Ag+/Ag with excellent photocatalytic and bactericidal properties. Its catalytic efficiency for dyes benzoic acid (BA), Rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) was up to 99.8, 98, 95, and 91%. The antibacterial rate was 100% against Escherichia coli and 99% against Staphylococcus aureus. More importantly, the photocatalytic and antibacterial PAN-based nanofiber membrane can be simply scaled up, which provides the membrane with great potential in highly efficient wastewater treatment and augmenting water supply.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据