4.8 Article

Wearable, Antifreezing, and Healable Epidermal Sensor Assembled from Long-Lasting Moist Conductive Nanocomposite Organohydrogel

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 44, 页码 41701-41709

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b15412

关键词

antifreezing; conductive nanocomposite organohydrogel; long-lasting moisture; wearable sensor; graphene

资金

  1. National Natural Science Foundation of China [21774012, 51973008, 21404006]
  2. Beijing Natural Science Foundation [2152023]
  3. National Key Research and Development Project [2016YFC0801302]
  4. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

Flexible wearable soft epidermal sensors assembled from conductive hydrogels have recently attracted tremendous research attention because of their extensive and significant applications in body-attachable healthcare monitoring, ultrasensitive electronic skins, and personal healthcare diagnosis. However, traditional conductive hydrogels inevitably face the challenge of long-term usage under room temperature and cold conditions, due to the lost water, elasticity, and conductivity at room temperature, and freezing at the water icing temperatures. It severely limits the applications in flexible electronics at room temperature or cold environment. Herein, we report a flexible, wearable, antifreezing, and healable epidermal sensor assembled from an antifreezing, long-lasting moist, and conductive organohydrogel. The nanocomposite organohydrogel is prepared from the conformal coating of functionalized reduced graphene oxide network by the hydrogel polymer networks consisting of poly(vinyl alcohol), phenylboronic acid grafted alginate, and polyacrylamide in the binary ethylene glycol (EG)/H2O solvent system. The obtained organohydrogel exhibits excellent temperature tolerance (-40 degrees C), long-lasting moisture (20 days), reliable self-healing ability, and can be assembled as wearable sensor for an accurate detection of both large and tiny human activities under extreme environment. Thus, it paves the way for the design of highly sensitive wearable epidermal sensors with reliable long-lasting moisture and excellent temperature tolerance for potential versatile applications in electronic skins, wearable healthcare monitoring, and human-machine interaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据