4.8 Article

Primary Amine-Functionalized Mesoporous Phenolic Resin-Supported Palladium Nanoparticles as an Effective and Stable Catalyst for Water-Medium Suzuki-Miyaura Coupling Reactions

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 44, 页码 41238-41244

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b11459

关键词

ordered mesoporous resin; palladium nanoparticles; Suzuki coupling; aromatic bromides; water

资金

  1. NSFC [21677098]
  2. Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning [TP2016034]

向作者/读者索取更多资源

Metal nanoparticles have been recognized and widely explored as unique catalysts for carbon-carbon coupling reactions. However, due to their extreme tendency to agglomeration, the generation and stabilization of metal nanoparticles in a porous matrix is an important research field. Herein, novel mesoporous phenolic resin-supported palladium nanoparticles (Pd@NH2-MPRNs) were prepared via direct anionic exchange followed by gentle reduction by using primary amine-functionalized ordered mesoporous phenolic resin as the support. The obtained Pd@NH2-MPRN material still possessed large surface area and ordered two-dimensional hexagonal mesoporous structure. Meanwhile, uniform and well-dispersed palladium nanoparticles were formed in the mesoporous channels, which could be attributed to an efficient complexation and stabilization effect derived from the primary amine groups. As a result, it can promote Suzuki coupling of less activated aromatic bromides to various biaryls in water with high conversion and selectivity. This excellent performance was attributed to small particle sizes, ordered mesopores, and a hydrophobic pore surface, which resulted in the decreased diffusion limitation and the increased active site accessibility. It is noted that it is competitive with the best palladium catalysts known for water-medium Suzuki coupling reaction, and it can be reused at least seven times without significant reduction in the catalytic efficiency, showing a good recyclability. Therefore, this work provides a new potential platform for designing and fabricating robust ordered mesoporous-polymer-supported metal nanoparticles for various catalytic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据