4.8 Article

Effect of Ambient Chemistry on Friction at the Basal Plane of Graphite

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 43, 页码 40800-40807

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b13261

关键词

friction; graphite; organic molecules; atomic force microscopy; reactive molecular dynamics simulations

资金

  1. National Science Foundation [CMMI-1727356, 1727571]
  2. Directorate For Engineering
  3. Div Of Civil, Mechanical, & Manufact Inn [1727571] Funding Source: National Science Foundation

向作者/读者索取更多资源

Graphite is widely used as a solid lubricant due to its layered structure, which enables ultralow friction. However, the lubricity of graphite is affected by ambient conditions and previous studies have shown a sharp contrast between frictional behavior in vacuum or dry environments compared to humid air. Here, we studied the effect of organic gaseous species in the environment, specifically comparing the adsorption of phenol and pentanol vapor. Atomic force microscopy experiments and reactive molecular dynamics simulations showed that friction was larger with phenol than with pentanol. The simulation results were analyzed to test multiple hypotheses to explain the friction difference, and it was found that mechanically driven chemical bonding between the tip and phenol molecules plays a critical role. Bonding increases the number of phenol molecules in the contact, which increases the adhesion as well as the number of atoms in registry with the topmost graphene layer acting as a pinning site to resist sliding. The findings of this research provide insight into how the chemistry of the operating environment can affect the frictional behavior of graphite and layered materials more generally.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据