4.8 Article

Scalable, Large-Area Printing of Pore-Array Electrodes for Ultrahigh Power Electrochemical Energy Storage

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 41, 页码 37859-37866

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b14478

关键词

pore array; spray printing; graphene; carbon nanofiber; YP-50F; Li4Ti5O12; lithium-ion capacitor

资金

  1. U.K. Engineering and Physical Science Research Council [EP/M009394]
  2. Innovate U.K. [102655]
  3. Innovate UK [102655] Funding Source: UKRI

向作者/读者索取更多资源

Through-electrode thickness honeycomb architectures were layer-by-layer self-assembled directly through a scalable printing process for ultrapower hybrid lithium-ion capacitor applications. Initially, the electrochemical performance of the pore-array electrodes was investigated as a function of the active material type (graphene plates, carbon nanofibers, and activated carbon). Inactive components (conductive carbon and polymer binder) were then minimized to 5 wt %. Finally, an optimized activated carbon-based cathode was paired with a spray-printed Li4Ti5O12-based anode and a range of anode-to-cathode mass ratios in a lithium-ion capacitor arrangement were investigated. A 1:5 anode/cathode mass ratio provided an attractive energy density comparable with a Li4Ti5O12/LiFePO4 lithium-ion battery but with outstanding power capability that was an order of magnitude greater than typical for lithium-ion batteries. The pore-array electrode was reproduced over areas of 20 cm x 15 cm in a double-sided coated configuration, and the option for selectively patterning electrodes was also demonstrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据