4.8 Article

Thioether Phosphatidylcholine Liposomes: A Novel ROS-Responsive Platform for Drug Delivery

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 41, 页码 37411-37420

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b08901

关键词

thioether phosphatidylcholine; liposome; ROS-responsive; drug delivery; DOX

资金

  1. Major National Science and Technology Program for Innovative Drug from the Ministry of Science and Technology of China [2017ZX09101002-001-004]

向作者/读者索取更多资源

Liposomes are the most valuable nanocarriers in clinical use because of their biocompatibility, biodegradation, and effective encapsulation of hydrophilic or hydrophobic drugs. However, their applications are limited by the structure and functions of the most common phospholipids used as the main component of the liposomes. In this work, novel series of thioether phosphatidylcholines (S-PCs) and S-PC-based liposomes (S-LPs) were developed for reactive oxygen species (ROS)-responsive drug release. First of all, S-PCs with different chain lengths were synthesized by a combination of click reaction and heterogeneous esterification. Differential scanning calorimetry studies indicated that S-PCs had different phase transition temperatures depending on their chain lengths. Their critical aggregation concentrations were measured by the fluorescence probe technique indicating the self-assembly ability. After that, S-PC-based stealth liposomes (S-LPs) containing DSPE-PEG(2000) and cholesterol were prepared via a classic thin-film method. Doxorubicin (DOX) as a model drug was loaded in the stealth liposomes (DOX/S-LPs) by using the ammonium sulfate gradient method with high encapsulation efficiency. DOX/S-LPs were characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), and cryogenic TEM, confirming their spherical structure with the bilayer thickness of about 4 nm. The ROS sensitivity of S-PCs and S-LPs was carefully evaluated in the presence of H2O2 by means of mass spectrometry, DLS, TEM, and ultraviolet spectroscopy and release study. The results indicated the significant structural change of S-LPs after H2O2 treatment, which demonstrated that S-LPs possessed an efficient ROS-triggered disintegration because of thioether oxidation of S-PCs. Finally, in vitro and in vivo anticancer efficiency assays revealed the improved drug potency of DOX/S-LPs, which can be attributed to ROS-triggered destruction of S-LPs after the uptake by tumor cells followed by rapid release of DOX. All together, as alternatives of traditional phosphatidylcholines, S-PC-based stealth liposomes are promising ROS-responsive carriers for the controlled delivery of drugs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据