4.7 Article

Non-smooth Newton Methods for Deformable Multi-body Dynamics

期刊

ACM TRANSACTIONS ON GRAPHICS
卷 38, 期 5, 页码 -

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3338695

关键词

Numerical optimization; friction; contact; multi-body dynamics; robotics

向作者/读者索取更多资源

We present a framework for the simulation of rigid and deformable bodies in the presence of contact and friction. Our method is based on a non-smooth Newton iteration that solves the underlying nonlinear complementarity problems (NCPs) directly. This approach allows us to support nonlinear dynamics models, including hyperelastic deformable bodies and articulated rigid mechanisms, coupled through a smooth isotropic friction model. The fixed-point nature of our method means it requires only the solution of a symmetric linear system as a building block. We propose a new complementarity preconditioner for NCP functions that improves convergence, and we develop an efficient GPU-based solver based on the conjugate residual (CR) method that is suitable for interactive simulations. We show how to improve robustness using a new geometric stiffness approximation and evaluate our method's performance on a number of robotics simulation scenarios, including dexterous manipulation and training using reinforcement learning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据