4.3 Article Proceedings Paper

CompAct: On-chip Compression of Activations for Low Power Systolic Array Based CNN Acceleration

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3358178

关键词

Deep neural networks; systolic arrays; low-power design

资金

  1. National Science Foundation CAREER Award

向作者/读者索取更多资源

This paper addresses the design of systolic array (SA) based convolutional neural network (CNN) accelerators for mobile and embedded domains. On- and off-chip memory accesses to the large activation inputs (sometimes called feature maps) of CNN layers contribute significantly to total energy consumption for such accelerators; while prior has proposed off-chip compression, activations are still stored on-chip in uncompressed form, requiring either large on-chip activation buffers or slow and energy-hungry off-chip accesses. In this paper, we propose CompAct, a new architecture that enables on-chip compression of activations for SA based CNN accelerators. CompAct is built around several key ideas. First, CompAct identifies an SA schedule that has nearly regular access patterns, enabling the use of a modified run-length coding scheme (RLC). Second, CompAct improves compression ratio of the RLC scheme using Sparse-RLC in later CNN layers and Lossy-RLC in earlier layers. Finally, CompAct proposes look-ahead snoozing that operates synergistically with RLC to reduce the leakage energy of activation buffers. Based on detailed synthesis results, we show that CompAct enables up to 62% reduction in activation buffer energy, and 34% reduction in total chip energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据