4.6 Article

Iron oxide nanoparticles supported on biogenic silica derived from bamboo leaf ash for rhodamine B photodegradation

期刊

SUSTAINABLE CHEMISTRY AND PHARMACY
卷 13, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scp.2019.100149

关键词

Iron oxide nanoparticles; Biogenic silica; Photocatalysis; Photodegradation

资金

  1. Ministry of Research, Technology and Higher Education, Republic of Indonesia [12459/M/KP/2019]
  2. Directorate of Research and Community Service, Universitas Islam Indonesia

向作者/读者索取更多资源

This research demonstrates the use of biogenic silica derived from bamboo leaf ash as a support for iron oxide nanoparticles. The preparation includes silica extraction from bamboo leaf ash and iron oxide nanoparticle impregnation into the silica gel under hydrothermal conditions, which is followed by calcination at 400 degrees C for 2 h. The physicochemical characterization includes X-ray diffraction analysis, gas sorption analysis, scanning electron microscopic analysis and transmission electron microscopic analysis. The light absorption capability and the band gap energy of the materials were determined by diffuse-reflectance UV-visible spectrophotometry. The materials obtained by varying the Fe content to 5 and 10% wt. were evaluated in rhodamine B photocatalytic degradation and photooxidation systems. It was found that the materials have a combined hematite and magnetite nanostructure, with the ratio of 9: 10, and the particle sizes range from 10 to 40 nm. With a band gap energy of 2.27 eV, the prepared materials produce the successive photocatalytic degradation of rhodamine B. It was clarified that the formation of composite enhances stability and reusability of photocatalyst as shown by the stable initial rate at wide pH range and reuse for 5 cycles. Degradation mechanism is enhanced by the addition of H2O2 as an oxidant, and the investigation of the effect of scavengers shows that the degradation rate not only depends on radical formation but also on other species related to the formation of oxidizing agent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据