4.6 Review

The Seven Deadly Sins of Measuring Brain Structural Connectivity Using Diffusion MRI Streamlines Fibre-Tracking

期刊

DIAGNOSTICS
卷 9, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/diagnostics9030115

关键词

fibre-tracking; tractogram; connectivity; tractography; streamlines

资金

  1. National Health and Medical Research Council (NHMRC) of Australia
  2. Australian Research Council (ARC)

向作者/读者索取更多资源

There is great interest in the study of brain structural connectivity, as white matter abnormalities have been implicated in many disease states. Diffusion magnetic resonance imaging (MRI) provides a powerful means to characterise structural connectivity non-invasively, by using a fibre-tracking algorithm. The most widely used fibre-tracking strategy is based on the step-wise generation of streamlines. Despite their popularity and widespread use, there are a number of practical considerations that must be taken into account in order to increase the robustness of streamlines tracking results, particularly when these methods are used to study brain structural connectivity, and the connectome. This review article describes what we consider the 'seven deadly sins' of mapping structural connections using diffusion MRI streamlines fibre-tracking, with particular emphasis on 'sins' that can be practically avoided and they can have an important impact in the results. It is shown that there are important 'deadly sins' to be avoided at every step of the pipeline, such as during data acquisition, during data modelling to estimate local fibre architecture, during the fibre-tracking process itself, and during quantification of the tracking results. The recommendations here are intended to inform users on potential important shortcomings of their current tracking protocols, as well as to guide future users on some of the key issues and decisions that must be faced when designing their processing pipelines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据