4.6 Article

Asymmetric Spatial Power Dividers Using Phase-Amplitude Metasurfaces Driven by Huygens Principle

期刊

ACS OMEGA
卷 4, 期 10, 页码 14340-14352

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.9b02195

关键词

-

向作者/读者索取更多资源

Recent years have witnessed an extraordinary spurt in attention toward the wave-manipulating strategies revealed by phase-amplitude metasurfaces. Recently, it has been shown that, when two different phase-encoded metasurfaces responsible for doing separate missions are added together based on the superposition theorem, the mixed digital phase distribution will realize both missions at the same time. In this paper, via a semi-analytical procedure, we demonstrate that such a theorem is not necessarily valid when using phase-only metasurfaces or ignoring the element pattern functions. We introduce the concept of asymmetric spatial power divider (ASPD) with arbitrary power ratio levels in which modulating both amplitude and phase of the metaatoms is inevitable to fully control the power intensity pattern of a reflective metasurface. Numerical simulations illustrate that the proposed ASPD designed by proper phase and amplitude distribution over the surface can directly generate a desired number of beams with predetermined orientations and power budgets. The C-shaped Pancharatnam-Berry meta-atoms locally realize the optimal phase and amplitude distribution in each case, and the good conformity between simulations and theoretical predictions verifies the presented formalism. A prototype of our ASPD designs is also fabricated and measured, and the experimental results corroborate well our numerical and semianalytical predictions. Our findings not only offer possibilities to realize arbitrary spatial power dividers over subwavelength scale but also reveal an economical and simple alternative for a beamforming array antenna.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据