4.6 Article

Water Vapor Adsorption-Desorption Behavior of Surfactant-Coated Starch Particles for Commercial Energy Wheels

期刊

ACS OMEGA
卷 4, 期 11, 页码 14378-14389

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.9b00755

关键词

-

资金

  1. Government of Saskatchewan (Ministry of Agriculture) [20160266]

向作者/读者索取更多资源

This study reports on the adsorption (dehumidification)-desorption (humidification) behavior of cetylpyridinium bromide (CPB) coated starch particles (SPs), denoted as SP-CPB, as a potential desiccant material for air-to-air energy exchangers. CPB is a cationic surfactant with antibacterial activity that can be used to modify the surface properties of SPs, especially at variable CPB loading levels (SP-CPB0.5, SP-CPB2.5, and SP-CPB5.0, where the numeric suffix represents the synthetic loading level of CPB in mM). The SP-CPB0.5 sample displayed optimal surface area and pore structure properties that was selected for water sorption isotherm studies at 25 degrees C. The CPB-coated SPs sample (SP-CPB0.5) showed an improved water vapor uptake capacity compared to unmodified starch (SPs) and other desiccant systems such as high amylose starch (HAS(15)) and silica gel (SG(13)). Single-step and cyclic water vapor sorption tests were conducted using a small-scale exchanger coated with SP-CPB0.5. The calculated latent effectiveness values obtained from direct measurements using cyclic tests (65.4 +/- 2%) agree closely with the estimated latent effectiveness from single-step tests (64.6 +/- 2%) at controlled operating conditions. Compared to HAS(15)- and SG(13)-coated exchangers, the SP-CPB0.5-coated exchanger performed much better at controlled operating conditions, along with improved longevity due to the CPB surface coating. The presence of CPB did not attenuate the uptake properties of native SPs. Latent effectiveness of SP-CPB0.5-coated exchanger was enhanced (5-30% higher) over that of the SG(13)- or HAS(15)-coated exchangers, according to the wheel angular speed. This study reports on a novel and sustainable SP-CPB0.5 material as a promising desiccant coating with tunable uptake and surface properties with potential utility in air-to-air energy exchangers for ventilation systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据