4.8 Article

Optimization and comparison of porosity rate measurement methods of Selective Laser Melted metallic parts

期刊

ADDITIVE MANUFACTURING
卷 28, 期 -, 页码 802-813

出版社

ELSEVIER
DOI: 10.1016/j.addma.2019.05.035

关键词

Additive manufacturing; Selective Laser Melting; Porosity; Lack of fusion; Key-hole; Density measurement; Archimedes method; Helium pycnometry; Micrographic cross section

资金

  1. BPI France

向作者/读者索取更多资源

The systematic occurrence of porosities inside selective laser melted (SLM) parts is a well-known phenomenon. In order to improve the density of SLM parts, it is important not only to assess the physical origin of the different types of porosities, but also to be able to measure as precisely as possible the porosity rate so that one may select the optimum manufacturing parameters. Considering 316 L steel parts built with different input energies, the current paper aims to (1) present the different types of porosities generated by SLM and their origins, (2) compare different methods for measuring parts density and (3) propose optimal procedures. After a preliminary optimization step, three methods were used for quantifying porosity rate: the Archimedes method, the helium pycnometry and micrographic observations. The Archimedes method shows that results depend on the nature and temperature of the fluid, but also on the sample volume and its surface roughness. During the micrographic observations, it has been shown that the results depend on the magnification used and the number of micrographs considered. A comparison of the three methods showed that the optimized Archimedes method and the helium pycnometry technique gave similar results, whereas optimized micrographic observations systematically underestimated the porosity rate. In a second step, samples were analyzed to illustrate the physical phenomena involved in the generation of porosities. It was confirmed that: (1) low Volume Energy Density (VED) causes non-spherical porosities due to insufficient fusion, (2) in intermediary VED the small amount of remaining blowhole porosities come from gas occlusion in the melt-pool and (3) in excessive VED, cavities are formed due to the key-hole welding mode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据