4.7 Article

A Missense Mutation of the HSPB7 Gene Associated with Heat Tolerance in Chinese Indicine Cattle

期刊

ANIMALS
卷 9, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/ani9080554

关键词

Chinese cattle; HSPB7 gene; heat tolerance

资金

  1. Jilin Provincial Academy of Agricultural Sciences Innovation Project
  2. National Beef Cattle and Yak Industrial Technology System [CARS-37]
  3. Guangxi Science and Technology Major Project [AA18118041]

向作者/读者索取更多资源

Simple Summary A missense mutation (NC_037329.1: g.136054902 C > G: p. Ala69Gly) was identified in the heat shock protein family B (small) member 7 (HSPB7) gene in indicine cattle, which might be a candidate mutation associated with the heat tolerance. Here, Polymerase Chain Reaction and DNA sequencing methods were used to detect this mutation in 774 individuals belonging to 32 Chinese indigenous cattle breeds. The distribution of alleles of NC_037329.1: g.136054902 C > G displays significant geographical difference across native Chinese cattle breeds and cattle carrying allele G distributed in regions with higher mean annual temperature, relative humidity, and temperature humidity index. Our results demonstrate that the mutation of the HSPB7 gene in Chinese indicine cattle might be a candidate gene associated with the heat tolerance. The small heat shock proteins (HSPB) are expressed in response to heat stress, and the heat shock protein family B (small) member 7 (HSPB7) gene has been reported to play an important role in heat tolerance pathways. Only a missense mutation (NC_037329.1: g.136054902 C > G: p.Ala69Gly) was identified in the HSPB7 gene in indicine cattle, which might be a candidate mutation associated with the heat tolerance. Here, we explore the allele frequency of this mutation in 774 individuals belonging to 32 Chinese indigenous cattle breeds using polymerase chain reaction (PCR) and DNA sequencing methods. The distribution of alleles of NC_037329.1: g.136054902 C > G displays significant geographical difference across native Chinese cattle breeds that the allele C was dominant in northern cattle groups, while allele G was dominant in southern indicine cattle groups. Additionally, the association analysis indicated that the G allele was significantly associated with mean annual temperature (T), relative humidity (RH), and temperature humidity index (THI) (p < 0.01), suggesting that cattle carrying allele G were distributed in regions with higher T, RH, and THI. Our results demonstrate that the mutation of the HSPB7 gene in Chinese indicine cattle might be a candidate gene associated with the heat tolerance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据