4.6 Article

Dynamic Deep Forest: An Ensemble Classification Method for Network Intrusion Detection

期刊

ELECTRONICS
卷 8, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/electronics8090968

关键词

dynamic deep forest; tree-based ensemble approach; machine learning; network intrusion detection

资金

  1. National Natural Science Foundation of China for Distinguished Young Scholar [61425012]
  2. National Science and Technology Major Projects for the New Generation of Broadband Wireless Communication Network [2017ZX03001014]

向作者/读者索取更多资源

Network Intrusion Detection System (NIDS) is one of the key technologies to prevent network attacks and data leakage. In combination with machine learning, intrusion detection has achieved great progress in recent years. However, due to the diversity of intrusion types, the representation learning ability of the existing models is still deficient, which limits the further improvement of the detection performance. Meanwhile, with the increasing of model complexity, the training time becomes longer and longer. In this paper, we propose a Dynamic Deep Forest method for network intrusion detection. It uses cascade tree structure to strengthen the representation learning ability. At the same time, the training process is accelerated due to small-scale parameter fitting and dynamic level-growing strategy. The proposed Dynamic Deep Forest is a tree-based ensemble approach and consists of two parts. The first part, Multi-Grained Traversing, uses selectors to pick up features as complete as possible. The selectors are constructed dynamically so that the training process will stop as soon as the optimal feature combination is found. The second part, Cascade Forest, introduces level-by-level tree structures. It has fewer hyper-parameters and follows a dynamic level-growing strategy to reduce model complexity. In experiments, we evaluate our model on network intrusion dataset KDD'99. The results show that the Dynamic Deep Forest method obtains higher recall and precision through a short time of model training. Moreover, the Dynamic Deep Forest method has lower risk of misclassification, which is more stable and reliable in a real network environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据