4.5 Article

Vibrational fingerprints of the Mn4CaO5 cluster in Photosystem II by mixed quantum-classical molecular dynamics

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
卷 1857, 期 10, 页码 1669-1677

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbabio.2016.07.004

关键词

Infrared spectra; FTIR; Photosystem II; Density functional theory; VDOS

资金

  1. European Research Council within the VII Framework Program of the European Union [240624]

向作者/读者索取更多资源

A detailed knowledge of the structures of the catalytic steps along the Kok-Joliot cycle of Photosystem II may help to understand the strategies adopted by this unique enzyme to achieve water oxidation. Vibrational spectroscopy has probed in the last decades the intermediate states of the catalytic cycle, although the interpretation of the data turned out to be often problematic. In the present work we use QM/MM molecular dynamics on the S-2 state to obtain the vibrational density of states at room temperature. To help the interpretation of the computational and experimental data we propose a decomposition of the Mn4CaO5 moiety into five separate parts, composed by diamond motifs involving four atoms. The spectral signatures arising from this analysis can be easily interpreted to assign experimentally known bands to specific molecular motions. In particular, we focused in the low frequency region of the vibrational spectrum of the S-2 state. We can therefore identify the observed bands around 600-620 cm(-1) as characteristic for the stretching vibrations involving Mn1-O1-Mn2 or Mn3-O5 moieties. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据