4.7 Article

Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins

期刊

NPJ BIOFILMS AND MICROBIOMES
卷 5, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41522-019-0094-5

关键词

-

资金

  1. NIDCR [DE024346-01, DE10641, DE022720]

向作者/读者索取更多资源

The opportunistic fungal pathogen Candida albicans is capable of adhering to the oral mucosa despite forces created by salivary flow. Although many fungal adhesion proteins have been identified, less is known about the temporal development of cell adhesion and biofilm growth in a flow environment. In this study, we use a flow system with real-time imaging of C. albicans cells as they adhere and grow. Rates of cell attachment and dispersion of C. albicans knockout strains of putative adhesins, transcription factors, and deletions with a hyperfilamentous phenotype were quantified during 18 h of biofilm development. Cell adhesion under flow is a multi-phase process initiated with cell rolling, then an initial firm attachment to the substrate occurs. After attachment, cells enter a growth phase where cells either commit to adherence or disperse. C. albicans Delta eap1, Delta hwp2, Delta hyr1, and Delta ihd1 cells had significantly reduced initial attachment and subsequent adhesion, while Delta als1/Delta als3 had no change in initial attachment but reduced adhesion maintenance. WT cells had increased adhesion during the late growth phase when hyphae were more highly expressed. Hyperfilamentous strains had 10-fold higher total biofilm growth, a result of significantly reduced detachment rates, showing that hyphal morphogenesis is important for adhesion maintenance in the developing biofilm. The rate of C. albicans biomass dispersion was most important for determining the density of the mature biomass. Adhesion maintenance was mediated in part by Ywp1, a protein previously thought to regulate dispersion, thus it functions as an adhesion maintenance protein in C. albicans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据