4.8 Article

Quantitative prediction of erythrocyte sickling for the development of advanced sickle cell therapies

期刊

SCIENCE ADVANCES
卷 5, 期 8, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aax3905

关键词

-

资金

  1. National Heart, Lung, and Blood Institute [U01HL114476]

向作者/读者索取更多资源

Sickle cell disease is induced by a mutation that converts normal adult hemoglobin to sickle hemoglobin (HbS) and engenders intracellular polymerization of deoxy-HbS and erythrocyte sickling. Development of anti-sickling therapies requires quantitative understanding of HbS polymerization kinetics under organ-specific conditions, which are difficult to assess with existing experimental techniques. Thus, we developed a kinetic model based on the classical nucleation theory to examine the effectiveness of potential anti-sickling drug candidates. We validated this model by comparing its predictability against prior in vivo and in vitro experimental results. We used the model to quantify the efficacy of sickling inhibitors and obtain results consistent with recent screening assays. Global sensitivity analysis on the kinetic parameters in the model revealed that the solubility, nucleation rate prefactor, and oxygen affinity are quantities that dictate HbS polymerization. This finding provides quantitative guidelines for the discovery of intracellular processes to be targeted by sickling inhibitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据