4.8 Article

Quantum computation with universal error mitigation on a superconducting quantum processor

期刊

SCIENCE ADVANCES
卷 5, 期 9, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aaw5686

关键词

-

资金

  1. National Basic Research Program of China [2017YFA0304300]
  2. National Natural Science Foundation of China [11875050]
  3. NSAF [U1730449]

向作者/读者索取更多资源

Medium-scale quantum devices that integrate about hundreds of physical qubits are likely to be developed in the near future. However, these devices will lack the resources for realizing quantum fault tolerance. Therefore, the main challenge of exploring the advantage of quantum computation is to minimize the impact of device and control imperfections without complete logical encoding. Quantum error mitigation is a solution satisfying the requirement. Here, we demonstrate an error mitigation protocol based on gate set tomography and quasi-probability decomposition. One- and two-qubit circuits are tested on a superconducting device, and computation errors are successfully suppressed. Because this protocol is universal for digital quantum computers and algorithms computing expected values, our results suggest that error mitigation can be an essential component of near-future quantum computation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据