4.8 Article

Promoting Ni(II) Catalysis with Plasmonic Antennas

期刊

CHEM
卷 5, 期 11, 页码 2879-2899

出版社

CELL PRESS
DOI: 10.1016/j.chempr.2019.07.022

关键词

-

资金

  1. Australian Research Council [DP150102110]
  2. Central Analytical Research Facility (CARF), Queensland University of Technology

向作者/读者索取更多资源

Plasmonic catalysis has drawn significant interest recently, as the catalysis can be driven by visible light. Here, we show a new tactic to apply low-flux visible-light irradiation on plasmonic metal nanoparticles (NPs) to initiate catalysis with surface-bound transition-metal complexes under mild conditions. Ni2+ complexes (as catalytic reaction sites) and Au or Ag NPs were immobilized on gamma-Al2O3 nanofibers to produce plasmonic-antenna-promoted catalysts. The light irradiation on Au or Ag NPs enhanced photocatalytic activity of the Ni2+ complexes for reductive cleavage of C-O bond by 18-fold or 17-fold, respectively. The intense electromagnetic near-fields of the plasmonic metal NPs significantly increased the chemisorption of the reactant to the Ni2+ active sites. The light-excited hot electrons transfer via a molecular bridge of the aromatic ring of the reactants. The light-enhanced chemisorption plays a key role in this photocatalyst's structure that comprises a plasmonic antenna and catalytically active metal complex sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据