4.7 Review

Therapeutic Irradiation: Consequences for Bone and Bone Marrow Adipose Tissue

期刊

FRONTIERS IN ENDOCRINOLOGY
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fendo.2019.00587

关键词

irradiation; bone marrow microenvironment; bone marrow adipose tissue; osteoblast; adipocyte

资金

  1. NIH/NIGMS [P20GM121301, U54GM115516, P30GM106391]
  2. Maine Medical Center Research Institute [IRG-16-191-33, 133077-RSG-19-037-01-LIB]
  3. American Cancer Society [IRG-16-191-33, 133077-RSG-19-037-01-LIB]
  4. Amgen Inc.
  5. UCB Inc.

向作者/读者索取更多资源

Radiotherapy continues to be one of the most accepted medical treatments for cancer. Localized irradiation is the most common treatment for prostate, pancreatic, rectal, cervical and endometrial malignancies. Conventional localized fractions are total doses of 30-62Gy at 1.8-2Gy per fraction, with administration of similar to 60Gy often used for tumor ablation. However, even the lowest dose of localized irradiation exposure can result in adverse complications to adjacent organs, tissues, and vessels, which absorb a portion of the treatment. Skeletal complications are common amongst cancer patients undergoing these localized treatments. Irradiation exposure causes deterioration to the overall quantity and quality of bone by interfering with the trabecular architecture through increased osteoclast activity and decreased osteoblast activity. Irradiation-induced bone damage parallels adipocyte infiltration of the bone marrow (BM) resulting in compositional alterations of the microenvironment that may further affect bone quality and disease state. There may also be direct effects of irradiation on the BM adipocyte/pre-adipocyte, although in vitro findings do not always agree and cellular response is dependent on irradiation dosage. Hematopoietic cells also become apoptotic upon irradiation, which causes a range of skeletal effects. Bone loss leaves patients at a greater risk for osteopenia, osteoporosis, osteonecrosis, and skeletal fractures that drastically reduce quality of life. Osteoanabolic agents stimulate bone formation and reduce fracture risk in patients with low bone density; thus, osteoanabolic or anti-resorptive agents may be useful co-treatments with irradiation. This review discusses these topics and proposes further research directions using novel or combination therapies to enhance bone health during irradiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据