4.7 Article

Evidence of austenite memory in PH 15-5 and assessment of its formation mechanism

期刊

MATERIALS & DESIGN
卷 176, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2019.107841

关键词

Supermartensitic stainless steel; Austenite memory; Reversed austenite; Phase transformation; In-situ characterization; High temperature electron backscatter diffraction

资金

  1. Take Off program

向作者/读者索取更多资源

Austenite memory and subsequent spontaneous recrystallization during austenitization is stated for some types of soft martensitic stainless steels such as X4CrNiMo16-5-1 or 13Cr-5Ni but have not been proposed for the commercial alloy PH15-5 until now. However, the understanding of the austenitization behavior is defined to be crucial as it influences grain size, dislocation density of austenite and thus the final mechanical properties of the material. Therefore, this study investigates the austenitization behavior of PH15-5 by means of in-situ high temperature electron back scatter diffraction of continuous austenitization and directly evidences austenite memory also in this alloy. In order to characterize the austenite formation mechanism in detail, dilatometer, in-situ X-ray diffraction and confocal laser scanning microscope experiments have been carried out. Corroborated with thermokinetic DICTRA simulations, a diffusion controlled transformation exhibiting austenite memory is evidenced. The in-situ high temperature electron backscatter diffraction data in comparison with recent literature indicates the inheritance of geometrically necessary dislocations from martensite to austenite. Therefore, a basic model is postulated in order to describe the inheritance of geometrically necessary dislocations due to a diffusion controlled transformation process. (c) 2019 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据