4.7 Article

OxyR senses sulfane sulfur and activates the genes for its removal in Escherichia coli

期刊

REDOX BIOLOGY
卷 26, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.redox.2019.101293

关键词

OxyR; Sulfane sulfur; Escherichia coli; Thioredoxin; Glutaredoxin

资金

  1. National Natural Science Foundation of China [91751207, 31770093]
  2. National Key Research and Development Program of China [2016YFA0601103]
  3. Natural Science Foundation of Shandong Province, China [ZR2016CM03, ZR2017ZB0210]

向作者/读者索取更多资源

Sulfane sulfur species including hydrogen polysulfide and organic persulfide are newly recognized normal cellular components, and they participate in signaling and protect cells from oxidative stress. Their production has been extensively studied, but their removal is less characterized. Herein, we showed that sulfane sulfur at high levels was toxic to Escherichia coli under both anaerobic and aerobic conditions. OxyR, a well-known regulator against H2O2, also sensed sulfane sulfur, as revealed via mutational analysis, constructed gene circuits, and in vitro gene expression. Hydrogen polysulfide modified OxyR at Cys199 to form a persulfide OxyR C199-SSH, and the modified OxyR activated the expression of thioredoxin 2 and glutaredoxin 1. The two enzymes are known to reduce sulfane sulfur to hydrogen sulfide. Bioinformatics analysis indicated that OxyR homologs are widely present in bacteria, including obligate anaerobic bacteria. Thus, the OxyR sensing of sulfane sulfur may represent a preserved mechanism for bacteria to deal with sulfane sulfur stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据