4.5 Article

Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst

期刊

出版社

SPRINGER
DOI: 10.1007/s11705-019-1821-4

关键词

methane combustion; NiO; CeO2 catalyst; interaction; oxygen vacancy; kinetic study

向作者/读者索取更多资源

In the last decades, many reports dealing with technology for the catalytic combustion of methane (CH4) have been published. Recently, attention has increasingly focused on the synthesis and catalytic activity of nickel oxides. In this paper, a NiO/CeO2 catalyst with high catalytic performance in methane combustion was synthesized via a facile impregnation method, and its catalytic activity, stability, and water-resistance during CH4 combustion were investigated. X-ray diffraction, low-temperature N-2 adsorption, thermogravimetric analysis, Fourier transform infrared spectroscopy, hydrogen temperature programmed reduction, methane temperature programmed surface reaction, Raman spectroscopy, electron paramagnetic resonance, and transmission electron microscope characterization of the catalyst were conducted to determine the origin of its high catalytic activity and stability in detail. The incorporation of NiO was found to enhance the concentration of oxygen vacancies, as well as the activity and amount of surface oxygen. As a result, the mobility of bulk oxygen in CeO2 was increased. The presence of CeO2 prevented the aggregation of NiO, enhanced reduction by NiO, and provided more oxygen species for the combustion of CH4. The results of a kinetics study indicated that the reaction order was about 1.07 for CH4 and about 0.10 for O-2 over the NiO/CeO2 catalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据