4.6 Article

A Novel Fabrication Method for Compliant Silicone Phantoms of Arterial Geometry for Use in Particle Image Velocimetry of Haemodynamics

期刊

APPLIED SCIENCES-BASEL
卷 9, 期 18, 页码 -

出版社

MDPI
DOI: 10.3390/app9183811

关键词

particle image velocimetry; experimental fluids; additive manufacturing; haemodynamic modelling

向作者/读者索取更多资源

Cardiovascular diseases (CVDs) are one of the leading causes of death globally. In-vitro measurement of blood flow in compliant arterial phantoms can provide better insight into haemodynamic states and therapeutic procedures. However, current fabrication techniques are not capable of producing thin-walled compliant phantoms of complex shapes. This study presents a new approach for the fabrication of compliant phantoms suitable for optical measurement. Two 1.5x scaled models of the ascending aorta, including the brachiocephalic artery (BCA), were fabricated from silicone elastomer Sylgard-184. The initial phantom used the existing state of the art lost core manufacturing technique with simple end supports, an acrylonitrile butadiene styrene (ABS) additive manufactured male mould and Ebalta-milled female mould. The second phantom was produced with the same method but used more rigid end supports and ABS male and female moulds. The wall thickness consistency and quality of resulting stereoscopic particle image velocimetry (SPIV) were used to verify the fidelity of the phantom for optical measurement and investigation of physiological flow fields. However, the initial phantom had a rough surface that obscured SPIV analysis and had a variable wall thickness (range = 0.815 mm). The second phantom provided clear particle images and had a less variable wall thickness (range = 0.317 mm). The manufacturing method developed is suitable for fast and cost-effective fabrication of different compliant arterial phantom geometries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据