4.8 Article

Scalable and Isotropic Expansion of Tissues with Simply Tunable Expansion Ratio

期刊

ADVANCED SCIENCE
卷 6, 期 22, 页码 -

出版社

WILEY
DOI: 10.1002/advs.201901673

关键词

chemical tissue processing; expansion microscopy; hydrogel-tissue chemistry; super-resolution microscopy; tissue expansion

资金

  1. Samsung Research Funding & Incubation Center of Samsung Electronics [SRFC-MA1601-08]

向作者/读者索取更多资源

Tissue expansion techniques physically expand swellable gel-embedded biological specimens to overcome the resolution limit of light microscopy. As the benefits of expansion come at the expense of signal concentration, imaging volume and time, and mechanical integrity of the sample, the optimal expansion ratio may widely differ depending on the experiment. However, existing expansion methods offer only fixed expansion ratios that cannot be easily adjusted to balance the gain and loss associated with expansion. Here, a hydrogel conversion-based expansion method is presented, that enables easy adjustment of the expansion ratio for individual needs, simply by changing the duration of a heating step. This method, termed ZOOM, isotropically expands samples up to eightfold in a single expansion process. ZOOM preserves biomolecules for post-processing labelings and supports multi-round expansion for the imaging of a single sample at multiple zoom factors. ZOOM can be flexibly and scalably applied to nanoscale imaging of diverse samples, ranging from cultured cells to thick tissues, as well as bacteria, exoskeletal Caenorhabditis elegans, and human brain samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据