4.5 Article

Generalized Space-Time-Periodic Diffraction Gratings: Theory and Applications

期刊

PHYSICAL REVIEW APPLIED
卷 12, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.12.024026

关键词

-

向作者/读者索取更多资源

This paper studies the theory and applications of the diffraction of electromagnetic waves by space-time-periodic (STP) diffraction gratings. We show that, in contrast with conventional spatially periodic gratings, a STP diffraction grating produces spatial diffraction orders, each of which is formed by an infinite set of temporal diffraction orders. Such spatiotemporally periodic gratings are endowed with enhanced functionalities and exotic characteristics, such as an asymmetric diffraction pattern, nonreciprocal and asymmetric transmission and reflection, and an enhanced diffraction efficiency. The theory of the wave diffraction by STP gratings is formulated through satisfying the conservation of both momentum and energy, as well as rigorous Floquet mode analysis. Furthermore, the theoretical analysis of the structure is supported by time-and frequency-domain finite-difference time-domain (FDTD) numerical simulations for both transmissive and reflective STP diffraction gratings. Additionally, we provide the conditions for Bragg and Raman-Nath diffraction regimes for STP gratings. Finally, as a particular example of a practical application of the STP diffraction gratings to communication systems, we propose an original multiple-access communication system featuring full-duplex operation. STP diffraction gratings are expected to find exotic practical applications in communication systems, especially for the realization of enhanced-efficiency or full-duplex beam coders, nonreciprocal beam splitters, nonreciprocal and enhanced-resolution holograms, and illusion cloaks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据